报告题目:Nano-structured Ion Exchange Membrane for New Energy and Clean Water
报告时间:2018年11月24日(周六)上午9:00
报告地点:假山校区二楼会议室211
主讲人:中国科学院山西煤炭化学研究所 李南文 研究员
主讲人简介:
李南文,研究员,博士生导师,中科院“百人计划”获得者,德国“洪堡学者”。于2009年在中科院长春应用化学研究所高分子化学与物理国家重点实验室获得有机化学博士学位。先后在德国、加拿大、美国从事“洪堡学者”、博士后等研究,师从国际著名膜科学家美国科学院院士William Koros、Journal of Membrane Science主编Michael Guiver及Young Moo Lee教授等从事能源、环境相关的功能高分子分离膜与膜材料的研发工作。2014年底,以中科院“百人计划”引进回国。
以离子交换膜应用为背景,以离子高效传输“纳米通道”构建、膜稳定性为导向,通过设计开发新型聚合物链拓扑结构体系,对高温缺水条件下质子、阴离子高效传输及膜稳定性开展了一系列创新性的研究工作。解决了离子交换膜特定环境下离子传导率低、化学稳定性差等一系列关键性问题,丰富了离子传输机理内涵、离子交换膜设计原理与制备方法。在国际学术刊物如:J. Am. Chem. Soc., Angew. Chem. Int. Ed., Energy Environ. Sci., Macromolecules等发表70余篇,引用次数超过2000次,多篇文章被作为封面文章报道;是十多个国际知名杂志如:Chem. Rev., Energy Environ. Sci., Macromolecules等十多个期刊审稿人。申请发明专利多项,先后主持承担了国家科技重大专项、自然科学基金重点项目、面上项目、Shell石油公司等项目多项。目前研究兴趣主要是离子交换膜在水资源、能源、环境等领域的应用。具体侧重于开发适合工业需求的高浓盐水浓缩、燃料电池、钒液流电池的纳米通道离子交换膜,以及高性能自具微孔CO2分离膜材料及规模化制备技术。
报告摘要:
Efficient and selective transport of ions is critical in materials for renewable energy and clean water. This ion-exchange membrane (IEM) is one limitation to the achievement of affordable technology for application in new energy and clean water. The key to ion transport in IEMs is believed to be nanochannels that contain functional groups, through which “hydrated” ions can pass efficiently. Several approaches to form IEM nanochannels have been examined to improve ion conductivity values, such as changes in the acidity and the position of functional groups, and the control of membrane morphologies by block copolymer architectures, but these approaches had only limited success. A remaining challenge in the materials science of membranes lies in the molecular design of proton-conducting channels with optimized properties similar to those of the well-known perfluorinated polymer electrolytes. In this report, I will show the recent development of ion-containing copolymer in our research group which have demonstrated that use of graft or comb-shaped copolymer architectures result in valuable ion transport and morphological properties for IEMs. Challenges in obtaining well-defined nanochannel morphologies, and possible strategies to improve transport properties in copolymers having structures with the potential to withstand operation in electrochemical/chemical devices, are discussed. Opportunities for the application of ion-containing copolymer membranes in fuel cells, vanadium flow batteries, electrolysis, and electrodialysis are also reviewed.